An Improved Artificial Fish Swarm Algorithm based on Hybrid Behavior Selection
نویسندگان
چکیده
The artificial fish swarm algorithm (AFSA) is a heuristic global optimization technique based on population which is easy to understand, good robustness, and not insensitive to initial values. The behavior of fishes has a great impact on the performance of the algorithm, such as global search and convergence speed. At present, there has no general research theory to select behaviors of fishes. In order to deal with this problem, we proposed an improved artificial fish swarm algorithm based on hybrid behavior selection. There are two mainly works in this paper. Firstly, we propose an improved algorithm based on swallowed behavior, which can greatly speed up the convergence. Secondly, in order to deal with the problems of easy to fall into local optimum value, we added breeding behavior to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and faster convergence speed.
منابع مشابه
AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...
متن کاملLog-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm
Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishe...
متن کاملA Hybrid Clustering Algorithm Based on Improved Artificial Fish Swarm
K-medoids clustering algorithm is used to classify data, but the approach is sensitive to the initial selection of the centers and the divided cluster quality is not high. Basic Artificial Fish Swarm Algorithm is a new type of heuristic swarm intelligence algorithm, but optimization is difficult to get a very high precision due to the randomness of the artificial fish behavior. A novel clusteri...
متن کاملWater Quality Parameters Identification Model Based on Artificial Fish Swarm Algorithm with Adaptive Parameter Optimization
In view of the bad convergence performance and low precision of standard artificial fish swarm algorithm in the water quality properties identification, this paper put forward an improved identification model based on adaptive parameters optimization. Firstly, it optimized the immune cloning and selection algorithm (ICSA) in periodic mutation operator and selection operator. Then it introduced ...
متن کاملSolving High Dimensional and Complex Non-convex Programming Based on Improved Quantum Artificial Fish Algorithm
An improved quantum artificial fish swarm algorithm is proposed in this paper. Based on that quantum computing have exponential acceleration for heuristic algorithm, by examining eight most recent patents and some literatures in the area of artificial fish swarm algorithm and quantum computing. The new algorithm uses qubits to code artificial fish and quantum revolving gate, preying behavior, f...
متن کامل